Numerical Value Type

DTS-11

126.(2)
$$Cl - CH_2 - \overset{*}{CH} - CH_2 - CH_3, CH_3 - CH - \overset{*}{CH} - CH_3$$
 $CH_3 \quad CH_3$

127.(2) Only Al_4C_3 and Be_2C upon hydrolysis yield methane

$$\text{Al}_4\text{C}_3 + 12\text{H}_2\text{O} \longrightarrow 3\text{CH}_4 + 4\text{Al}(\text{OH})_3$$

$$Be_2C + 4H_2O \longrightarrow CH_4 + 2Be(OH)_2$$

128.(6)
$$CH_3 - CH_2 - C \equiv C - CH_3 + HBr \longrightarrow CH_3 - CH_2 - C = CH - CH_3 + CH_3 - CH_2 - CH = C - CH_3$$

I and II are structural isomers. Both of these show geometrical isomerism, thus in all four configurational isomers are possible.

$$\Rightarrow$$
 $x = 2$ and $y = 4$ \Rightarrow $x + y = 6$

129.(7)
$$CH_3 - \overset{*}{CH} - CH_2 - CH_2 - CH_3$$
 (or) $CH_3 - \overset{*}{CH} - CH$ $CH_3 - \overset{*}{CH} - CH_3$ $CH_2 - CH_3$

130.(5) (i)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$
 (ii)

$$\begin{array}{c} \operatorname{CH}_3 - \operatorname{CH} - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_3 \\ | \\ \operatorname{CH}_3 \\ \text{2-Methylpentane} \end{array}$$

(iii)
$$CH_3 - CH_2 - CH - CH_2 - CH_3$$
 (iv) CH_3 3-Methylpentane

(iv)
$$CH_3 - CH - CH - CH_3$$

 $CH_3 - CH_3$
 $CH_3 - CH_3$

$$\begin{array}{c} \operatorname{CH_3} \\ \mid \\ \text{(v)} \\ \operatorname{CH_3} - \operatorname{C-} \operatorname{CH_2-} \operatorname{CH_3} \\ \mid \\ \operatorname{CH_3} \\ \text{2, 2-Dimethylbutane} \end{array}$$

Total chain isomers = 5

132.(7)
$$Cl_2(excess)$$
 Cl $*$ $*$ $*$ Cl $*$ Cl $*$ Cl $*$ $*$ Cl $*$ $*$ Cl $*$ Cl

Total 7 dichloro products are possible.

133.(2) Two products will be obtained by addition reaction above and below the plane of ring. It is the example of syn hydroxylation.

Total three stereoisomers

136.(3)
$$CH_3 - CH_2 = C - CH_2$$

$$(3\alpha H)$$
Vacant p-orbital

Partial overlapping $\sigma\text{-}\pi$ conjugation (Hyperconjugation) or $\sigma\text{-}bond$ resonance

Here 3 carbon hydrogen bond orbital are available for overlap with adjacent vacant p-orbital

Me Me

139.(9) Degree of unsaturation (or) Double bond equivalent =
$$(C+1) - \left(\frac{H+X-N}{2}\right)$$
 \Rightarrow D.B.E. = 7

140.(3)
$$CH_3 - CH - CH_2 \xrightarrow{2NaNH_2} CH_3 - C = C - H \xrightarrow{NaNH_2} CH_3 - C = CNa + CH_3 - CH_2 \xrightarrow{\Theta} CH_3 - C = C - CH_2 - CH_3$$

Total 3 moles of \mbox{NaNH}_2 are required.